

TOPOLOGY - III, SOLUTION SHEET 13

Exercise 1. We refer the reader to exercise 1 of sheet 11 for the CW complex structures.

(1) We can realise S^n as a quotient of D^n , by identifying ∂D^n to a point. Therefore S^n has a cell in dimensions 0 and n . Therefore we have that the cellular complex for S^n is:

$$0 \rightarrow \mathbb{Z} \rightarrow 0 \rightarrow \dots \rightarrow \mathbb{Z} \rightarrow 0.$$

With the \mathbb{Z} in degrees $n, 0$. Note that all the boundary maps are the 0 maps, even when $n = 1$ (the case for S^1 is explained in part 6, along with the general case of connected graphs). Therefore we obtain that $H_k(S^n) = \mathbb{Z}$ if $n = k$ or 0 and 0 otherwise.

(2) Please refer to example 2.36 on page 141 of [Hatcher's book](#).
 (3) Please refer to example 2.37 on page 141 of [Hatcher's book](#).
 (4) Please refer to example 2.42 on page 144 of [Hatcher's book](#).
 (5) Since \mathbb{CP}^n has exactly one cell in all even dimensions and no cells in odd dimensions we have that the cellular complex for \mathbb{CP}^n is:

$$0 \rightarrow \mathbb{Z} \rightarrow 0 \rightarrow \mathbb{Z} \rightarrow 0 \rightarrow \dots \rightarrow \mathbb{Z} \rightarrow 0 \rightarrow 0.$$

Where the \mathbb{Z} live in even degrees. Therefore we obtain that $H_k(\mathbb{CP}^n)$ is equal to \mathbb{Z} in degrees $k = 0, 2, \dots, n$ and equal to 0 otherwise.

(6) Let E be the edge set of a graph Γ and I be the vertex set. Then the cellular complex for Γ is:

$$0 \rightarrow \mathbb{Z}^{|E|} \xrightarrow{\sigma} \mathbb{Z}^{|I|} \rightarrow 0.$$

Moreover if $[p, q]$ is an edge with end vertices p and q then $\sigma([p, q]) = p - q$. The orientation of the edges is determined by the choice of attaching maps

$\varphi_\alpha : S_\alpha^0 = \{p, q\} \rightarrow I$. Note that $Im \sigma$ is free of rank $|I| - 1$ and hence $H_1(\Gamma) = Ker \sigma$ is a free abelian group of rank $|E| - |I| + 1$. Since Γ is connected, we also have that $H_0(\Gamma) = \mathbb{Z}$.

Exercise 2. We refer the reader to section 2 of the notes by Jens Hemelaer, on Schubert cells which are uploaded on the moodle.